Role of the air-water-solid interface in bacteriophage sorption experiments.
نویسندگان
چکیده
Batch sorption experiments were carried out with the bacteriophages MS2 and phi X174. Two types of reactor vessels, polypropylene and glass, were used. Consistently lower concentrations of MS2 were found in the liquid phase in the absence of soil (control blanks) than in the presence of soil after mixing. High levels of MS2 inactivation (approximately 99.9%) were observed in control tubes made of polypropylene (PP), with comparatively little loss of virus seen in PP tubes when soil was present. Minimal inactivation of MS2 was observed when the air-water interface was completely eliminated from PP control blanks during mixing. All batch experiments performed with reactor tubes made of glass demonstrated no substantial inactivation of MS2. In similar experiments, bacteriophage phi X174 did not undergo inactivation in either PP or glass control blanks, implying that this virus is not affected by the same factors which led to inactivation of MS2 in the PP control tubes. When possible, phage adsorption to soil was calculated by the Freundlich isotherm. Our data suggest that forces associated with the air-water-solid interface (where the solid is a hydrophobic surface) are responsible for inactivation of MS2 in the PP control tubes. The influence of air-water interfacial forces should be carefully considered when batch sorption experiments are conducted with certain viruses.
منابع مشابه
Bacteriophage inactivation at the air-water-solid interface in dynamic batch systems.
Bacteriophages have been widely used as surrogates for human enteric viruses in many studies on virus transport and fate. In this investigation, the fates of three bacteriophages, MS2, R17, and phiX174, were studied in a series of dynamic batch experiments. Both MS2 and R17 readily underwent inactivation in batch experiments where solutions of each phage were percolated through tubes packed wit...
متن کاملRole of activated carbon from natural adsorbent for removal of textile dyes: effect of pH, kinetic and adsorbent mass
In the present work, we have investigated the sorption efficiency of the treated activated carbon from walnut shell(ACW) towards Direct Red 81 (DR81) and Direct Blue 71 (DB71) for the removal from aqueous solution. Thesorption study of ACW at the solid-liquid interface was investigated using kinetic, sorption isotherms, pH effectand amount of adsorbent. Experimental data were analyzed by Langmu...
متن کاملVirus transport during infiltration of a wetting front into initially unsaturated sand columns.
We investigated the effect of different flow conditions on the transport of bacteriophage phiX174 in Memphis aquifer sand. Virus transport associated with a wetting front moving into an initially unsaturated horizontal sand column was experimentally compared with that observed under steady-state saturated vertical flow. Results obtained by sectioning the sand columns showthattotal (retained and...
متن کاملTransport of citrate-coated silver nanoparticles in unsaturated sand.
Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air-water interface in addition to a solid-water interface. To this end, we measured breakthrough curves and retenti...
متن کاملمطالعات همدما و ترمودینامیکی جذب سرب توسط هیدروژل آلژینات پایدار شده با رس سپیولیت
Alginate biopolymer, due to possessing a high capacity and affinity for heavy metals, is a suitable material for the removal of metals from polluted waters; however, the weak structural consistency of alginate hydogels limits the practical application of this natural polymer in water purification practices. In this study, sepiolite clay mineral was used as a solidifier of alginate hydrogel to p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 64 1 شماره
صفحات -
تاریخ انتشار 1998